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Abstract

A method dealing with recognition of partially occluded and affine transformed binary objects is presented. The method is designed
for objects with smooth curved boundary. It divides an object into affine-invariant parts and uses modified radial vector for the descrip-
tion of parts. Object recognition is performed via string matching in the space of radial vectors.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recognition of objects under partial occlusions and
deformations caused by imaging geometry is one of the
most difficult problems in computer vision. It is required
always when analyzing 2D images of a 3D scene.
Although many methods trying to solve this task have
been published, it still remains open. Clearly, there is
no universal algorithm which would be ‘‘optimal’’ in
all cases. Different methods should be designed for differ-
ent classes of objects and for different groups of assumed
deformations.

This paper is devoted to objects with complicated curved
boundary. Such a boundary cannot be approximated by a
polygon without loss of accuracy, so we do not employ
polygonal-based methods at all. Furthermore, we assume
the objects are deformed by an unknown affine deforma-
tion. When photographing a planar object arbitrary ori-
ented in 3D space, the precise image deformation would
be a perspective projection. It is well-known it can be

approximated by affine transform when the object-to-cam-
era distance is large comparing to the size of the object. We
use the approximation by affine transformation because it
is easy to handle, mainly because it is linear and its jaco-
bian is constant in the image.

We introduce a method developed for the recognition
under the above mentioned conditions. First, the object is
divided into parts which are defined by means of inflection
points of the object boundary. Then the shape of each part
is described by a special kind of radial vector. Finally, the
parameters of the affine deformation are estimated and
classification is performed by string matching in the space
of radial vectors. The performance of the method is dem-
onstrated by experiments.

2. Overview of current methods

Current methods can be classified into two major cate-
gories. The methods of the first group divide the object into
affine-invariant parts. Each part is described by some kind
of ‘‘standard’’ global invariants, and the whole object is
then characterized by a string of vectors of invariants. Rec-
ognition under occlusion is performed by maximum sub-
string matching. Since inflection points of the boundary
are invariant to affine (and even projective) deformation
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of a shape, they become a popular tool for the definition of
the affine-invariant parts. This approach was used by Ibra-
him and Cohen (1998), who described the object by area
ratios of two neighboring parts. As a modification which
does not use inflection points, concave residua of convex
hull could be used (Lamdan et al., 1988). For polygon-like
shapes, however, inflection points cannot be used. Instead,
one can construct pats defined by three or four neighboring
vertices. Yang and Cohen (1999) used area ratios of the
parts to construct affine-invariants. Flusser (2002) further
developed their approach by finding more powerful invari-
ant description of the parts. A similar method was success-
fully tested for perspective projection by Rothwell et al.
(1992).

The methods of the second group are ‘‘intrinsically
local’’, i.e. they do not divide the shape into subparts
but rather describe the boundary in every point by
means of its small neighborhood. In that way they trans-
form the boundary to a so-called signature curve which
is invariant to affine/projective transform. Recognition
under occlusion is again performed by substring match-
ing in the space of signatures. Typical representatives
of this group are differential invariants. They were dis-
covered hundred years ago by Wilczynski (1906) who
proposed invariant signatures based on derivatives of
up to eighth-order. Weiss (1992) introduced differential
invariants to the computer vision community. He pub-
lished a series of papers on various invariants of orders
from four to six (Weiss, 1988; Bruckstein et al., 1997).
Although differential invariants seemed to be promising
from theoretical point of view, they have been experi-
mentally proven to be extremely sensitive to inaccurate
segmentation of the boundary, discretization errors and
noise.

Following methods dealing with recognition of trans-
formed object could be relevant to our conditions, too.
Mokhtarian and Abbasi (2002) used inflection points them-
selves to characterize the boundary. They constructed so-
called Curvature Scale Space and traced the position of
inflection points on different levels of image pyramid. The
trajectories of the inflection points then served as object
descriptors. Lamdan et al. (1988) used mutual position of
four ‘‘interesting’’ points for the recognition. To verify
the received match, normalized concave areas were
described by the radial vector. There are also methods
based on wavelet transform of the boundary. Tieng and
Boles (1995) introduced wavelet-based boundary represen-
tation, where affine invariance was achieved by enclosed
area contour parametrization. A similar approach was
used by Khalil and Bayeoumi (2001). However, the use
of the wavelet-based methods in case of partial occlusions
is questionable.

3. Definition of affine-invariant parts

Both inflection points and central points of straight lines
are affine-invariant, i.e. the properties ‘‘to be an inflection

point’’ and ‘‘to be a central point of a straight line’’ are pre-
served under arbitrary nonsingular affine transform. Thus,
we use these points (called ‘‘cut points’’ in the sequel) for
the construction of affine-invariant parts. We connect each
pair of neighboring cut points by a line. This line and the
corresponding part of the object boundary form a convex
region which may but need not to lie inside the original
object (in Fig. 1c). The sequence of such parts carries effi-
cient information about the object.

Detection of inflection points of discrete curves has been
discussed in numerous papers. Let us recall that in the con-
tinuous domain an inflection point is defined by a con-
straint €xðtÞ _yðtÞ � _xðtÞ€yðtÞ ¼ 0, where x(t), y(t) represent a
parametrization of the curve and the dots denote deriva-
tives with respect to t. When this definition is directly con-
verted to the discrete domain, it becomes very sensitive to
sampling and noise. Thus, we propose a new robust
method of curvature estimation.

For each boundary point, we construct a circle with its
center in this point and having fixed radius (see Fig. 1a).
We estimate the object boundary curvature as
object covered area

whole circle area
� 1

2
. The curvature is negative for convex

parts of the object boundary (less than a half of the circle
is covered by the object), positive for concave parts, and
equals zero for inflection points and straight lines. To sup-
press small fluctuation of the curvature value, we apply a
smoothing of the curvature series by convolution with a
narrow Gaussian kernel. We get a smoothed curvature
graph, such as in Fig. 1b.

Now we construct the division of the original object into
parts. Zero crossing points of the curvature and middle
points of approximately zero-value segments on the curva-
ture graph serve as cut points, it means points separating
the object parts. We connect neighboring cut points by
straight line (see Fig. 1) which defines the object into parts.
The parts, the area of which is less than a given threshold,
are not considered.

4. Description of the parts

The object is represented by the parts defined in the pre-
vious section. By adding a description of the shape of the
individual parts we get a description of the whole object
which is robust to occlusion. Robustness to occlusion
means that if some part of the object boundary is missing
or changed, only few elements of the feature vector are
changed. This is an important attribute. Note that tradi-
tional global methods, for instance description of the
object by moment invariants or Fourier descriptors, do
not have this property.

It would be possible to describe each part individually
and eliminate the impact of the deformation by using
proper affine-invariants (moment invariants or Fourier
descriptors for instance). In such case, however, we do
not employ important information that all the parts were
deformed by the same transformation. Including this con-
sistency information in the object description can signifi-
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cantly increase the recognition performance. Thus, we pro-
pose the following description of the parts by a modified
radial vector, with included position of control points.
See complete demo object description in Fig. 2a.

The spokes of the modified radial vector come from the
middle of the cutting line and they divide the part into sub-

parts of equal area. For each object part, they are con-
structed as follows:

(1) Let n be the required number of the spokes (i.e. the
length of the radial vector).

(2) For each boundary point, do the following.
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Fig. 1. Definition of affine-invariant parts.
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Fig. 2. Description and matching of the demo object.
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(3) Calculate the area of the triangle between the current
boundary point, the neighboring boundary point,
and the midpoint of the cutting line.

(4) If the cumulated area exceeds k/(n � 1) fraction of
the total part area, we put the ending of the kth spoke
in the current boundary point.

(5) The radial vector consists of the n spokes lengths. For
each part, we store its radial vector. It describes the
part shape completely.

(6) We store also absolute position of the part. It is rep-
resented by position of its cut points and position of
the mid-spoke end-point. This affine variant, comple-
mentary information will allow us to recover the
transformation later.

The introduced modified radial vector divides the part
invariantly under affine transformation. Note that a classi-
cal radial vector with constant-angle spokes distribution or
constant-boundary length spokes distribution has not such
a favorable property.

5. Matching

The image is classified by finding the longest and best
matching section of the border (in Fig. 2b). This is realized
by comparing sequences of parts, represented by their
radial vectors, between the classified image and database
objects.

(1) Initialize minimal required match length P to 1 and
similarity threshold Sthre to its minimal required
value Smin (Smin is a user-defined parameter, we rec-
ommend Smin = 0.8).

(2) For each part of the database object take a sequence
of this parts and P � 1 next parts.

(3) For each part of the image object take a sequence of
this parts and P � 1 next parts.

(4) Calculate affine transformation T that transforms the
image parts sequence to the database sequence. The
least square fit is applied to their cut points and
mid-spoke end-point.

(5) Transform the spokes of the image radial vectors by
the transformation T and calculate their length, i.e.
get their radial vectors.

(6) Compare each radial vector with the one from the
database by means of the similarity measure S

(described bellow).
(7) If S > Sthre, these two sequences match. Mark these

sequences as the best ones, denote their length as Pbest

and its similarity as Sbest. Now try to make the
sequence even longer, set P = P + 1, Sthre = Smin

and continue by step (4).
(8) Otherwise reset the sequence length and similarity

threshold to the last best values P = Pbest and
S = Sbest and continue the by loop (2), resp. (3).

There are many choices how to measure similarity
between who radial vectors u = u1, . . . ,un and v = v1, . . . ,vn.
It may be misleading to use ‘2 norm. We introduce original
similarity measure S 2 h0,1i, that we have found to per-
form well in the practical experiments.

Before defining concrete S, we put some general con-
straints on it. We require S = 1 only if u = v, S decreases
to zero for growing vector difference. The single similarity
measure si of the ith spoke lengths ui, vi is a Gaussian quan-
tity of the ui � vi difference (in Fig. 3a)

si ¼ e
� 1

r2
i

ui�vi
2ð Þ2

; ri ¼ k1 þ k2

ui þ vi

2

�
�
�

�
�
�;

where k1 and k2 are user-defined parameters.
We have the following requirements for combining

single component si to overall similarity measure S. We
require S = si if all si are equal, S = 0 if at least one
si = 0, and S needs to be sensitive to all si. Moreover, it
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Fig. 3. Similarity measure is introduced for radial vectors comparison.
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is reasonable to require S to be 0.75 if all but one si equal 1
and one si equals 0.5 (in Fig. 3b). One can construct many
heuristic functions fulfilling the above constraints. After
testing several possibilities we decided to use the following
functions because of their simplicity and good performance

S ¼
Pn

i¼1wi � siPn
i¼1wi

; wi ¼
n� 2

si
� ðn� 3Þ:

6. Experimental results

The proposed method was tested on a set of 24 binary
objects (Fig. 4) segmented from original color images.
The objects were successively deformed by various affine
transforms, their various regions were occluded and then
the objects were matched against the original database.
The sufficient number of matching parts is used as a crite-

Fig. 4. Our object database. These 24 objects are represented by 204 object parts.
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Fig. 5. Recognition examples and description of recognized database objects. (In the web version, the matching radial vectors are in red colour).
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rion for match of the objects. This is in fact a well-known
principle of string matching.

For illustration, two examples are shown in Fig. 5. On
the left-hand side, one can see partially occluded and trans-
formed objects. The corresponding database objects (which
were successfully found in both cases) are shown on the
right-hand side. The control (inflection) points are high-
lighted, their connecting lines define the division into parts.
The spokes of the corresponding radial vectors are drawn
inside the matched parts of the image.

The modified radial vector describes the boundary with
a good precision, the tolerance to a shape perturbations is
controlled by user-defined parameters/thresholds. This
enables an optimization for various types of shapes. Sur-
prisingly, the boundary does not need to be a smooth curve
with well-defined inflection points. The method finds con-
trol points even on polygonal parts (in Fig. 5a). Further-
more, due to some tolerance threshold for the detection
of inflection points, we can obtain even some non-convex
parts. We are able to construct radial vector also for these

non-convex parts (in Fig. 5d). Remind that our modified
radial vector is created by dividing cumulative area while
proceeding the part boundary.

The object description and the result of a recognition
naturally depends on the conditions of the experiment:
character of the shapes, amount of occlusion, degree of
the transformation, and noise. Before summing up statisti-
cal experiments, let us focus on some situations in detail.
As we can see in Fig. 6b, thanks to our robust curvature
estimation and similarity measure, the proposed method’s
resistance to noise is quite good. It is possible to set the
method parameters to be even more robust to noise than
in the Fig. 6b, but the number of false positive matches
would grow. Affine transformation was applied to the
images in Fig. 6c and 6d. The original object was recog-
nized from the image, but some parts were not included
in the match. We will explain this phenomenon on follow-
ing example.

At the bottom of Fig. 7 are two overlapped objects, the
second one was transformed by a slightly harder transfor-
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Fig. 6. Influence of affine transformation and noise to recognition.
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mation. One can see that the position of the marked con-
trol point was evaluated differently due to changed curva-
ture of the boundary. Therefore, one of the parts
changed its shape and did not match with the pattern part.
This leads to match reduction and worse position detection

(the overlayed database object is drawn by dotted line).
Control point instability is caused by unsuitable shapes
(without clear inflection points), affine transformation
(affects the curvature), or occlusion (inflection points orig-
inally ignored can become significant). Although our con-
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Fig. 7. The impact of instability of the control points.

Table 1
Experiment of eight object recognition under various conditions

Image area 100% 90% 50% 50% 100% 100% 50%

Constant scale Yes Yes No Yes Yes Yes Yes
Transformation None None None None Medium Strong Medium

Input image

12 7 4 3 10 7 3

11 8 7 4 6

11 8 3 4 6 4 3

11 9 3 4 3 3

7 4 7 7

13 8 3

10 7 6 8 4

9 6 4 4 4 8 4

Correct recognition is represented by the numbers of matching parts.
Icons inside the table denote the cases where only an insufficient number of parts were found for unique recognition.
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trol point detection on a smooth boundary was improved
comparing to traditional methods, it still remains a princi-
pal problem. In general, we can say that the recognition is
as good as the stability of the critical points.

Recognition under various conditions is summarized in
Table 1. ‘‘Image area’’ denotes the size of the visible part of
the test object (in per cent), ‘‘Constant scale of details’’
indicates whether or not the same thresholds were used
for database and test objects when detecting inflection
points, and ‘‘Transformation’’ means the significance of
the deformation measured by skewing. The transformation
was chosen randomly to significant skewing and the occlu-
sion was made automatically by straight white area. The
image degradation is visualized on the square image in
the table header. The table itself shows the maximum num-
ber of matching parts over all database objects. In all
instances where the maximum number of matching parts
was greater than two the test objects were recognized cor-
rectly. One or two matching parts does not ensure unique
correct match, so the classification can be wrong. These
not-recognized objects are represented inside the table by
image. Their problem is caused by strong deformation or
large amount of occlusion which leads to instability of con-
trol points.

We tested also the impact of a perspective transforma-
tion on the recognition rate. We took several photos of

an object (trencher) with a camera in various positions.
The object was segmented by single thresholding. Bound-
ary of the segmented binary image was noisy and there
was notable impact of the object thickness. When the cam-
era was about 1 meter from the trencher, the perspective
effect of the image transformation was not too strong
and the object was recognized well (in Fig. 8). After we
moved the camera to about 25 cm from the object, the
transformation became obviously nonlinear (see Fig. 9).
This is in contradiction with our original assumption about
the linearity of the deformation, and that is why the recog-
nition may failed in some cases.

6.1. Comparison with area ratio method

The presented method is compared to Ibrahim and
Cohen (1998) paper, which is based on area ratio of shape
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Fig. 8. Recognition under mild perspective projection. Both objects on the left were identified correctly.
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Fig. 9. Recognition under heavy perspective projection. The object top left was identified correctly, while the object bottom left was misclassified because
of significant nonlinear deformation.

Table 2
The number of incorrect matches of area ratio and proposed method

Length of possible match Area ratio method The proposed method

4-part string 12 wrong matches 0 wrong matches
3-part string 59 wrong matches 0 wrong matches
2-part string 249 wrong matches 10 wrong matches

Thresholds of Ali’s method was set to classify our correct matches as good
ones.
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parts. Although their algorithm was originally not devel-
oped for recognition of partially occluded objects, it is suit-
able for these conditions too. Their parts are bounded by
inflection points as well.

Recognition power and discriminability of the methods
were tested by mutual matching of our 24 database objects
(in Fig. 4). Note, the objects are represented by 204 parts
and a match can be detected on each of their combination.
Implementations of both algorithms use the same detection
of inflection points, therefore we can set a threshold of the
Ali’s method to classify our correct matches as good ones.
In Table 2, counts of incorrectly matched neighboring
parts are compared.

It is clear that the area ratio carries much less informa-
tion than our modified radial vector. Proposed method
needs only 3 parts for unique correct match, while the area
ratio method requires 5 parts. These numbers are relevant
to our database, different number of matching parts could
be required for unique object match on some other data-
base. Both methods can be affected by control points insta-
bility. In Fig. 10 you can see one of the 10 worst two-part
wrong matches of presented method and a sample of wrong
four-part match of area ratio method.

7. Conclusion

We presented a method for recognition of partially
occluded binary objects deformed by affine transforma-
tion. The method uses local affine-invariant description
of the object boundary by means of inflection points

and radial vectors. When working with digital bound-
ary, the major limitation of the method is stability of
inflection points. As the experiments demonstrated, if
the curve has ‘‘prominent’’ inflection points, they are
usually very stable under affine transformation and the
method works perfectly. On the other hand, in the case
of obscure boundary the inflection points may be
detected at different positions depending on the particu-
lar transformation and/or occlusion and the recognition
may fail.

Our experiment proved a good discrimination power of
the method. On the given test set, we discovered that if the
maximum number of matched boundary parts between the
unknown object and the database element is greater than
two, it always indicates a correct match. Thus, this thresh-
old can be recommended for prospective real experiments
too.

References

Bruckstein, A.M., Rivlin, E., Weiss, I., 1997. Scale-space semi local
invariants. Image Vision Comput. 15, 335–344.

Flusser, J., 2002. Affine invariants of convex polygons. IEEE Trans. Image
Process., 11.

Ibrahim Ali, W.S., Cohen, F.S., 1998. Registering coronal histological 2-D
sections of a rat brain with coronal sections of a 3-D brain atlas using
geometric curve invariants and B-spline representation. IEEE Trans.
Medial Imag., 17.

Khalil, M.I., Bayeoumi, M.M., 2001. A dyadic wavelet affine invariant
function for 2D shape recognition. IEEE Trans. PAMI 23, 1152–1163.

Lamdan, Y., Schwartz, J.T., Wolfson, H.J., 1988. Object recognition by
affine invariant matching. Comput. Vision Pattern Recognition, 335–344.

50 100 150 200 250

20
40
60
80

100
120

50 100 150 200 250 300 350 400

20

40

60

80

100

10 20 30 40 50 60

10

20

30

40

50

60

50 100 150 200 250 300

20

40

60

80

100

120

Fig. 10. Example of too short matches for correct recognition, for both compared methods. Proposed method needs three parts for unique correct match,
the area ratio method requires five parts. Two-part wrong match of the proposed method. Four-part wrong match of the area ratio method.
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